Elliptic PDEs with constant coefficients on convex polyhedra via the unified method
نویسندگان
چکیده
منابع مشابه
Laplace's equation on convex polyhedra via the unified method.
We provide a new method to study the classical Dirichlet problem for Laplace's equation on a convex polyhedron. This new approach was motivated by Fokas' unified method for boundary value problems. The central object in this approach is the global relation: an integral equation which couples the known boundary data and the unknown boundary values. This integral equation depends holomorphically ...
متن کاملA qMC-spectral method for elliptic PDEs with random coefficients on the unit sphere
We present a quasi-Monte Carlo spectral method for a class of elliptic partial differential equations (PDEs) with random coefficients defined on the unit sphere. The random coefficients are parametrised by the Karhunen-Loève expansion, while the exact solution is approximated by the spherical harmonics. The expectation of the solution is approximated by a quasi-Monte Carlo integration rule. A m...
متن کاملElliptic and Parabolic Second-order Pdes with Growing Coefficients
We consider a second-order parabolic equation in R with possibly unbounded lower order coefficients. All coefficients are assumed to be only measurable in the time variable and locally Hölder continuous in the space variables. We show that global Schauder estimates hold even in this case. The proof introduces a new localization procedure. Our results show that the constant appearing in the clas...
متن کاملA Finite Element Method on Convex Polyhedra
We present a method for animating deformable objects using a novel finite element discretization on convex polyhedra. Our finite element approach draws upon recently introduced 3D mean value coordinates to define smooth interpolants within the elements. The mathematical properties of our basis functions guarantee convergence. Our method is a natural extension to linear interpolants on tetrahedr...
متن کاملUnfolding Convex Polyhedra via Quasigeodesics
We show that cutting shortest paths from every vertex of a convex polyhedron to a simple closed quasigeodesic, and cutting all but a short segment of the quasigeodesic, unfolds the surface to a planar simple polygon.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2015
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2014.12.027